Notes

		AANTHOQUININIC	ACID DERIVATIVES					
$R'O$ $CO_{2}Et$								
Compd	R	R'	HCl, salt mp, °C	Formula	Analysis			
1	Н	Н	$186 - 187^{a}$	$C_{12}H_{11}NO_3$	С, Н, N			
2	Η	Н	198-200	C ₁₂ H ₁₂ ClNO ₃	С, Н, N			
3	Morpholinomethyl	Н	153 - 155	$C_{17}H_{22}Cl_2N_2O_4 \cdot H_2O$	C, H, Cl, N, O			
4	Diethylaminomethyl	Н	130-132	$C_{17}H_{24}Cl_2N_2O_3\cdot H_2O$	C, H, Cl, N, O			
5	Piperidinomethyl	Н	161 - 163	$\mathrm{C_{18}H_{24}Cl_2N_2O_3\cdot H_2O}$	C, H, Cl, N, O^b			
6	II	2-Diethylaminoethyl	170 - 171.5	$C_{18}H_{26}Cl_2N_2O_3$	C, H, Cl, N			
7	H	2-Dimethylaminoethyl	202 - 203	$C_{16}H_{22}Cl_2N_2O_3\cdot H_2O$	C, H, N ^c			
8	H	2-Morpholinoethyl	202.5 - 203.5	$C_{18}H_{24}Cl_2N_2O_4$	С, Н, N			
9	II	2-Piperidinoethyl	181-183	$C_{19}H_{26}Cl_2N_2O_3$	С, Н, N			
10	H	3-Diethylaminopropyl	172 - 175	$C_{1,y}H_{28}Cl_2N_2O_3$	С, Н, N			
11	Н	2-Diethylaminopropyl	160 - 162	$C_{19}H_{25}Cl_2N_2O_3$	С, Н, N			
12	Н	2-Dimethylaminopropyl	174 - 176	$C_{17}H_{24}Cl_2N_2O_3$	С, Н, N			
13	Br	Н	226-228 ^d	$C_{12}H_{11}Br_2NO_3$	C, H, Br, N			
14	Br	II	190–191ª	C12H10BrNO3	C, H, Br, N			

TABLE I

" Free base. ^b Weight loss in vacuo, 2 hr at $100^{\circ} < 1\%$. Loss at 140° , 4.6%. Calcd for loss of H₂O, 4.4%. ^c Weight loss after 2 hr in vacuo at $100^{\circ} < 1\%$. Loss at 140° , 4.8%. Calcd for loss of H₂O, 4.75%. ^d HBr salt.

piously with H₂O. There was obtained 82 g, 79% of product, mp 183–185°. On recrystu from EtOH–H₂O, the material had mp 186–187° (lit. mp 185.5°).³ The HCl salt of the ester was formed by bubbling dry HCl through a solu of the ester in EtOH that had been dild with Et₂O just to cloudiness and then cleared with a few drops of EtOH. It had mp 198–200° dec and was unchanged on recrystu from EtOH–Et₂O.

5-Morpholinomethyl-6-hydroxyquinoline-4-carboxylic Acid, Et Ester • 2HCl (3). Experiment 1.—Nanthoquininic acid, Et ester (4.3 g, 0.02 mole) was dissolved in the minim of EtOH at room temp, 1.7 g of 40% formaldehyde soln and 2 g of morpholine were added, and the mixt was refluxed for 1 hr. The reaction mixt was evaped to dryness, the residue dissolved in abs EtOH, and an excess of alc HCl added. Addn of Et₂O to the soln gave a yellow cryst ppt, mp 153–155°. On recrystin of the material from EtOH=Et₂O, the mp spread rose to 151–157°. It was found finally that it was necessary to add a few drops of alc HCl to the recrystin solvents to narrow the mp range, mp 153–155°. The material was dried at 100° to yield 6 g (73%).

6-(2-Diethylaminoethoxy)quinoline-4-carboxylic Acid. Et Ester • 2HCl (6).---Freshly cut Na (0.47 g, 0.02 g-atom) was dissolved in abs EtOH. To this soln was added 4.3 g, 0.02 mole, of Et xanthoquininate dissolved in the minim of abs EtOH. With stirring 2.7 g, 0.02 mole, of freshly distd 2-diethylaminoethyl chloride was added dropwise. The mixt was refluxed for 4 hr, cooled, and filtered to remove pptd NaCl. The EtOH was evapd and the residual oil dissolved in Et_2O . The Et_2O solutions exid repeatedly with a 10% HCl. The aq solution of the dihydrochloride was made basic with 10% NaOH and extd 3 times with 50 ml of Et₂O. The Et₂O soln was dried (Na₂SO₄) and filtered, and the Et₂O stripped. The residual oil was dissolved in abs EtOH and an excess of alc HCl was added. The addu of Et₂O pptd the title compd, which was filtered and dried at 100°. There was obtained 6.3 g, 81% of product with mp 163-169°. Two recrystus from i-PrOH-Et₂O, to which 2 drops of alc HCl were added yielded anal. material, mp 170-171.5°.

5-Bromo-6-hydroxyquinoline-4-carboxylic Acid, Et Ester-HBr (13).—Ethyl xanthoquininate (5 g, 0.023 mole) was dissolved in glac AcOH and a soln of Br₂ in glac AcOH was added dropwise with stirring at room temp until the color of Br₂ persisted. The title comp pptd from the AcOH, was filtered off, washed with H₂O, and dried at 100°. There was obtained 7.4 g (85%) of compd, mp 215-220°. After 2 recrystms from EtOAc, the aual, material had mp 226-228° dec.

5-Bromo-6-hydroxyquinoline-4-carboxylic Acid, Et Ester (14). —During one attempt at the purification of 13, 0.5 g of this material was suspended in 100 ml of H₂O, boiled for 20 min, and filtered hot. The residue, after drying at 100° had mp 185-190°. After 2 recrystus from EtOAc, it had mp 190-191°. This material gave no test for Br^- .

Potential Psychotomimetics. Bromomethoxyamphetamines

CHARLES F. BARFKNECHT* AND DAVID E. NICHOLS¹

Division of Medicinal Chemistry, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52240

Received August 17, 1970

In the study of psychotomimetic amphetamines, 2,5dimethoxy-4-methylamphetamine (DOM) is the most potent compound yet discovered (50-150 times mescaline).² At least part of its potency is related to the nature of the para substituent. In light of Knoll's³ studies on the psychotomimetic effects of p-bromomethamphetamine and its cross-tolerance to LSD, the synthesis and evaluation of bromomethoxyamphetamines appeared to be a logical extension. Br has a comparable size, but different electronic character than Me. Kang and Green⁴ have recently demonstrated a correlation between the electronic character of the ring and hallucinogenic potency of methoxylated amphetamines. The substitution of Br into various ring positions of methoxylated amphetamines allows for several electronic arrangements.

Chemistry.—The general synthetic route involved preparation of the appropriately substituted benzaldehydes, condensation with $EtNO_2$, and reduction to the bromomethoxyamphetamines. Tables I and II summarize the compounds which have been prepared.

Attention is called to the report by Pandya and coworkers⁵ concerning the bromination of *m*-hydroxybenzaldehyde. The product of this reaction is claimed to be 3-hydroxy-4-bromobenzaldehyde; however, the

- (3) J. Knoll in "Amphetamines and Related Compounds," E. Costa and S. Garattini, Ed., Raven Press, New York, N. Y., 1970, p 761.
 - (4) S. Kang and J. P. Green, Nature (London), 226, 645 (1970).

⁽¹⁾ NDEA Title IV fellow, 1969-present.

⁽²⁾ A. T. Shulgin, T. Sargent, and C. Naranjo, Nature (London), 221, 537 (1969).

⁽⁵⁾ K. C. Pandya, R. B. K. Pandya, and R. N. Singh, J. Indian Chem. Soc., 29, 363 (1952).

н

Br

н

a

OCH3 Η

OCH₃ Br

 $\rm OCH_3$ \mathbf{Br}

Н

н

OCH3 H 113.5-115

н

 $0\mathrm{CH}_3$ Н

OCH3 н

OCH₃

 \mathbf{Br}

73-74.5

121-121 5

105 - 106

36.8

59.4

46.8

57

C10H10BrNO3

 $C_{11}H_{12}Br\mathbf{NO_4}$

 $C_{11}H_{12}BrNO_4$

C11H12BrNO4

A correlation has been demonstrated between the degree of fluorescence and the psychotomimetic potency for methoxylated amphetamines; no such relationship seems to exist for this series.¹⁰ For example, 2 and 6have nearly the same degree of fluorescence, but differ widely in their biological effects. A detailed study of the pharmacology is in progress.

Experimental Section¹¹

Bromomethoxybenzaldehydes.-All substituted benzaldehydes have been reported previously with the exception of 2,5dimethoxy-4-bromobenzaldehyde and 3,5-dimethoxy-4-bromobenzaldehyde, whose syntheses are described below.

3,5-Dimethoxy-4-bromobenzaldehyde.--3,5-Dihydroxy-4meth-

All compds were analyzed for C, H, N.				bromobe	bromobenzoic acid (K & K Laboratories, Inc.) was di-O-n			
				TAB	le II			
			BROMOMET	HOXYAMPHET	AMINE HYI	OROCHLORIDES		
				R_{3}	$\overbrace{R_6}^{NH_2}$			
Compd	\mathbf{R}_2	\mathbf{R}_3	\mathbf{R}_4	Rs	\mathbf{R}_{6}	Mp. °C	Yield, %	Formula ^a
1	Br	Н	Н	OCH_3	Н	151.5 - 153	20	$C_{10}H_{14}BrNO \cdot HCl$
2	Н	\mathbf{Br}	OCH_3	н	н	210 - 213	28.8	$C_{10}H_{14}BrNO \cdot HCl$
3	н	OCH_3	\mathbf{Br}	Н	н	161.5 - 163	32	C ₁₀ H ₁₄ BrNO HCl
4	\mathbf{Br}	Η	OCH_3	OCH ₃	Η	214 - 215.5	42	$C_{11}H_{16}BrNO \cdot HCl$
5	Н	OCH3	\mathbf{Br}	OCH₃	Н	221 - 222	36.8	$C_{11}H_{16}BrNO \cdot HCl$
6	OCH₃	н	\mathbf{Br}	OCH_3	Н	198 - 199	29.5	$C_{11}H_{16}BrNO \cdot HCl$

^a See Table I, footnote a.

product which we isolated proved to be 2-bromo-5hydroxybenzaldehyde. This assignment was verified by nmr spectroscopy and chemical conversion by Omethylation and permanganate oxidation to 2-bromo-5-methoxybenzoic acid. The physical properties of this material agreed with the literature values.⁶

The LAH reduction of 1-(bromomethoxyphenyl)-2nitropropenes was complicated by the extreme ease of debromination. Low temperatures and equimolar amounts of reagents prevented debromination, but resulted in poor yields of the bromomethoxyamphetamines.

Biological Results .-- The compounds were tested for an effect on a conditioned avoidance response in male rats. The detailed procedure has been reported previously.7 The effects were compared with those produced by mescaline, 3,4-dimethoxyamphetamine, DOM, and the CNS-stimulant dextroamphetamine. This assay gives an indication whether a compound possesses stimulant action or one more like that of mescaline, 3,4-DMA, and DOM. Table III summarizes the biological data. All compounds which exhibited an effect similar to mescaline-type compounds have the *p*-Br substituent.⁸ The data on the 2-bromo-5-methoxy analog (3) must be considered tentative, since 2,5-dimethoxyamphetamine which does not have a para substituent is active in humans but inactive in rats.⁹

ylated with Me_2SO_4 in the usual manner: yield 78% (EtOH- H_2O ; mp 248-250° (lit,¹² 249-50°). The acid chloride was obtained by reaction with SOCl₂. The crude product (mp 124-128°) was used in the next step without further purification. The aldehyde was obtained by reduction of the acid chloride by LiAlH(O-tert-Bu)₃ as described by Ho, et al.¹³ The crude aldehyde was recrystd from MeOH-H₂O; yield 52%; mp 112-114°. Anal. (C₉H₉BrO₃) C, H.

TABLE III BIOLOGICAL RESULTS

	$Threshold^a$	
\mathbf{Compd}	dose, mg/kg	Action
1	25	Inactive
2	9	CNS stimulation; onset of amphetamine- type toxicity at 18 mg/kg
3	7.5	Mescaline-like
4	25	Inactive
5	<10	Mescaline-like with some deaths at 10; inactive at 5 mg/kg
6	<2.5	Mescaline-like; effect much more pro- found than that caused by 2.5 mg/kg of DOM

^a Dose at which action was observed; any compd which does not show a mescaline-like effect at 25 mg/kg (the "effective" dose of mescaline) is considered inactive. The threshold dose of 3,4dimethoxyamphetamine HCl and DOM HCl are 12.5 and 2.5, resp.

⁽⁶⁾ P. H. Beyer, Recl. Trav. Chim. Pays-Bas, 40, 621 (1921).

⁽⁷⁾ C. F. Barfknecht, J. M. Miles, and J. L. Leseney, J. Pharm. Sci., 59, 1842 (1970).

⁽⁸⁾ During the revision of this manuscript, Dr. A. T. Shulgin informed us that 4-bromo-2,5-dimethoxyamplietamine has a potency in humans greater than DOM and an effect similar to 3,4-methylenedioxyamphetamine; Pharmacology, in press

⁽⁹⁾ J. R. Smythies, Neurosci. Res. Program Bull., 8, 79 (1970).

⁽¹⁰⁾ F. Antun, J. R. Smythies, F. Benington, R. D. Morin, C. F. Barf, knecht, and D. E. Nichols, Experientia, in press.

⁽¹¹⁾ Melting points were taken on a Hoover Uni-Melt apparatus and are corrected. Where analyses are indicated only by symbols of the elements. anal. results obtained for those elements were within $\pm 0.4\%$ of the theoretical values. Nmr spectra for all compounds were obtained on a Varian Associates T-60 and are consistent with the assigned structures.

⁽¹²⁾ H. Erdtman and B. Leopold, Acta Chem. Scand., 2, 34 (1948).

⁽¹³⁾ B. T. Ho, W. M. McIssac, R. An, L. W. Tansey, K. E. Walker, L. F. Englert, Jr., and M. B. Noel, J. Med. Chem., 13, 26 (1970).

2,5-Dimethoxy-4-bromobenzaldehyde.—2,5-Dimethoxybenzaldehyde (66.5 g, 0.4 mole) was dissolved in 300 ml of CH_2Cl_2 . Anhyd SnCl₄ (115 g, 0.44 mole) was added, followed by 64 g of Br₂ over a 1-hr period. The resulting soln was refuxed for 2 hr and stirred overnight at room temp. The orange suspension was poured over 500 g of ice, and the layers were sepd. The CH_2Cl_2 layer was washed with 10% NaHCO₃ and H₂O and dried (Na₂SO₄). After filtration the solvent was removed *in vacuo*, and the solid residue recrystd from MeOH-H₂O to yield 64 g (66%) of the aldehyde, mp 132-3°. Anal. (C₂H₉BrO₃) C, H.

The structure was confirmed by oxidation with MnO_4^- to 2,5-dimethoxy-4-brombenzoic acid, mp 170° (lit.¹⁴ mp 170°).

Bromomethoxyamphetamine Hydrochlorides.—All amphetamines were prepared from the corresponding 1-phenyl-2-nitropropenes by LAH reduction.¹⁶

(14) A. Luttringhans and H. Gralheer, Justus Liebigs Ann. Chem., 550, 67 (1941).

(15) C. B. Gairaud and G. R. Lappin, J. Org. Chem., 18, 1 (1953).

(16) L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis," Wiley, New York, N. Y., 1967, p 581.

Nicotinic Acid Esters as Coronary Vasodilators¹

D. S. BARIANA* AND M. SAVIC

Abbott Laboratories, Limited, Montreal, Quebec, Canada

Received August 10, 1970

Nicotinic acid and various nicotinates have been shown to possess both coronary and peripheral vasodilating activity.^{2,3} One such compound, 1,3,4,6tetranicotinoylfructofuranose (I), is used clinically in Europe as a peripheral vasodilator.⁴

This paper describes the synthesis and pharmacological properties of a number of new mono- and polynicotinates. A wide variety of polyhydroxy compounds was selected for esterification, so that the resulting esters would differ in physicochemical properties such as solubility and rate of hydrolysis. Two of the OH compounds, XIII and XX, used in esterification possess coronary vasodilating activity.

Pharmacology.—In the present study, compounds which caused a 20% increase in coronary sinus blood pO₂ for at least 10 min with minimal effect on blood pressure and heart rate qualified for further testing.

One of the members (IX) of the series of aromatic ethers of polyhydroxy alcohols (II-IX), caused an

NULES

	Тав	LE I ^{a,b}		
Com- pound		Mp.	Re- crystp ^d	
No.	R	°C	solvent	Formula
	ROCH ₂ C(X)HCH ₂ X	C c	
II	C_6H_5	88-89	A–B	$C_{21}H_{18}N_2O_5$
III	$\alpha(Naphthyl)$	92	A–B	$C_{25}H_{20}N_2O_5$
IV	$4-ClC_6H_5$	92	C–B	$C_{21}H_{17}ClN_2O_5$
V	β -Naphthyl	120	C–B	$C_{25}H_{20}N_2O_5$
VI	$4-CH_3C_6H_5$	83	C–B	$C_{22}H_{20}N_2O_5$
VII	$3,4$ - $Cl_2C_6H_4$	78	C–B	$C_{21}H_{16}Cl_2N_2O_5$
VIII	$4-OCH_3C_6H_4$	59-61	C–D	${ m C}_{22}{ m H}_{20}{ m N}_2{ m O}_6$
IX	$3,4-(CH_3)_2C_6H_3$	76 - 80	A–B	${\rm C}_{23}{\rm H}_{22}{\rm N}_{2}{\rm O}_{5}$
	RN(CH	$H_2CH_2X)_2$		
Х	CH_3	56	А	$C_{17}H_{19}N_{3}O_{4}$
XI	C_6H_5	70	C–B	$C_{22}H_{21}N_{3}O_{4}$
XII	$O(CH_2CH_2X)_2$	63	C–B	$\mathrm{C_{16}H_{16}N_{2}O_{5}}$
XIII	XCH ₂ CH ₂ N NCH ₂ CH ₂ X	121	C–B	$\mathrm{C}_{20}\mathrm{H}_{24}\mathrm{N}_4\mathrm{O}_4$
XIV	X I CHCH ₂ X	82	Α	$\mathrm{C}_{19}\mathrm{H}_{15}\mathrm{N}_{3}\mathrm{O}_{4}$
	I	RX		
XV	$4-C_6H_5C_6H_4$	149	A-B	$C_{18}H_{13}NO_2$
XVI	$4-COOCH_3C_6H_4$	103	А	$C_{15}H_{13}NO_4$
XVII	$\mathrm{CH}_3\mathrm{N}(\mathrm{CH}_2)_2$	152	\mathbf{C}	$\mathrm{C_{16}H_{18}N_2O_2}$
	$\mathrm{CH}_{2}\mathrm{C}_{6}\mathrm{H}_{5}$			
XVIII	CO NCH ₂	121	C–B	$\mathrm{C}_{16}\mathrm{H}_{12}\mathrm{N}_{2}\mathrm{O}_{4}$
XIX		163	Е	${ m C}_{33}{ m H}_{22}{ m N}_2{ m O}_4$
	X			
XX	C ₆ H ₅ N NC ₂ HCHCH ₂ X	68	A–C	$\mathrm{C}_{25}\mathrm{H}_{26}\mathrm{N}_4\mathrm{O}_4$

^k Yields, 21-86%. ^b Anal. C, H, N, O or C, H, N were obtained and were in agreement with calcd values. ^c $X = \bigvee_{N}^{CO_2} \frac{CO_2}{N}$ ^d Recrystn from A, Et₂O; B, CHCl₃; C, petr ether (bp 37-48°); D, C₆H₆; E, could not be crystd. Microanal. of crude product.

appreciable rise in pO_2 with very little undesirable effect on heart rate or blood pressure. The effect, however, was highly variable and testing was discontinued. Compound VIII caused a considerable rise in pO_2 , but there was excessive increase in blood pressure and heart rate. Of the other compounds listed in Table I, XII and XX were the most promising, but were found to have too short a duration of action. Compound XIV was effective, but too variable to warrant further study.

Experimental Section⁵

All of the polyhydroxy compounds used in esterification were either commercially available or were synthesized according to known procedures. The nicotinates were synthesized by the action of nicotinoyl chloride HCl on the corresponding alcoholic compounds in the presence of pyridine by the general procedure of Pongratz and Zirm.⁶

General Method of Synthesis of II-XX.—The appropriate alcohol (0.05 mole) was added to a cold mixture of nicotinoyl

(5) All melting points were taken with the Thomas-Hoover capillary melting point apparatus. Microanalysis were performed at the Microanalytical Laboratories of Abbott Laboratories, North Chicago, Ill. Ir spectra were recorded on a Beckman IR-8 infrared spectrophotometer.

(6) A. Pongratz and K. L. Zirm, Monatsh. Chem., 88, 330 (1957).

Previous papers in this series: (a) D. S. Bariana, J. Med. Chem.,
 927 (1969); (b) D. S. Bariana, *ibid.*, 13, 544 (1970).

⁽²⁾ H. A. Oelkers, Arzneim.-Forsch., 12, 1416 (1965).

⁽³⁾ Z. J. Vajdelek and M. Protiva, Chem. Listy, 45, 448 (1951); Chem. Abstr., 47, 8067 (1953).

⁽⁴⁾ F. Bonati and H. Tiepolo, Gazz. Med. Ital., 121, 113 (1962).